Coil combination of multichannel MRSI data at 7 T: MUSICAL
نویسندگان
چکیده
The goal of this study was to evaluate a new method of combining multi-channel (1)H MRSI data by direct use of a matching imaging scan as a reference, rather than computing sensitivity maps. Seven healthy volunteers were measured on a 7-T MR scanner using a head coil with a 32-channel array coil for receive-only and a volume coil for receive/transmit. The accuracy of prediction of the phase of the (1)H MRSI data with a fast imaging pre-scan was investigated with the volume coil. The array coil (1)H MRSI data were combined using matching imaging data as coil combination weights. The signal-to-noise ratio (SNR), spectral quality, metabolic map quality and Cramér-Rao lower bounds were then compared with the data obtained by two standard methods, i.e. using sensitivity maps and the first free induction decay (FID) data point. Additional noise decorrelation was performed to further optimize the SNR gain. The new combination method improved significantly the SNR (+29%), overall spectral quality and visual appearance of metabolic maps, and lowered the Cramér-Rao lower bounds (-34%), compared with the combination method based on the first FID data point. The results were similar to those obtained by the combination method using sensitivity maps, but the new method increased the SNR slightly (+1.7%), decreased the algorithm complexity, required no reference coil and pre-phased all spectra correctly prior to spectral processing. Noise decorrelation further increased the SNR by 13%. The proposed method is a fast, robust and simple way to improve the coil combination in (1)H MRSI of the human brain at 7 T, and could be extended to other (1)H MRSI techniques.
منابع مشابه
Considerations in applying 3D PRESS H-1 brain MRSI with an eight-channel phased-array coil at 3 T.
The purpose of this study was to assess the benefits of a 3 T scanner and an eight-channel phased-array head coil for acquiring three-dimensional PRESS (Point REsolved Spectral Selection) proton (H-1) magnetic resonance spectroscopic imaging (MRSI) data from the brains of volunteers and patients with brain tumors relative to previous studies that used a 1.5 T scanner and a quadrature head coil....
متن کاملFast MR Spectroscopic Imaging
MR spectroscopic imaging (MRSI) has become widely available as a research tool for mapping tissue metabolic status. Clinical research applications have been limited by intrinsically low sensitivity and by time-consuming phase encoding techniques that are used with conventional MRSI. The long encoding times limit volume coverage, introduce motion sensitivity and tax patient tolerance. The increa...
متن کاملDynamic 31P–MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7 T
Phosphorus MRSI (31 P-MRSI) using a spiral-trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion exercise inside a whole-body 7 T MR scann...
متن کاملMetabolite Mapping with Extended Brain Coverage Using a Fast Multisection MRSI Pulse Sequence and a Multichannel Coil
Multisection magnetic resonance spectroscopic imaging is a widely used pulse sequence that has distinct advantages over other spectroscopic imaging sequences, such as dynamic shimming, large region-of-interest coverage within slices, and rapid data acquisition. It has limitations, however, in the number of slices that can be acquired in realistic scan times and information loss from spacing bet...
متن کاملEvaluation of short-TE 1H MRSI for quantification of metabolites in the prostate
Back-to-back (1)H MRSI scans, using an endorectal and phased-array coil combination, were performed on 18 low-risk patients with prostate cancer at 3 T, employing TEs of 32 and 100 ms in order to compare metabolite visualization at each TE. Outer-volume suppression of lipid signals was performed using regional saturation (REST) slabs and the quantification of spectra at both TEs was achieved wi...
متن کامل